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Abstract. Mcasurements continuous in time have been consistently introduced in quantum
mechanics and applications worked out, mainly in quantum optics. In this context a
quantum filtering theory has been developed giving the reduced state after a measurement
when a certain trajectory of the measured observables is registered (the a posteriori states).
In this paper a new derivation of filtering equations is presented for the cases of counting
processes and of measurement processes of diffusive type. It is also shown that the equation
for the a posteriori dynamics in the diffusive case can be obtained, by a suitable limit, from
that in the counting case. Moreover, the paper is intended to clarify the meaning of the
various concepts involved and to discuss the connections among them. As an illustration
of the theory, simple models are worked out.

1. Introduction

Usually in quantum mechanics only instantaneous measurements are considered but,
by using the notion of instrument [1-3], measurements continuous in titne have been
consistently introduced [2, 4-15] and applications worked out [2,7,9, 12, 16-19] (see
also [20-23]). '

Now a natural question is: if during a continuous measurement a certain trajectory
of the measured observabie is registered, what is the state of the system soon after,
conditional upon this information (the ‘a posteriori’ state}? By using ideas from the
classical filtering theory for stochastic processes and the formulation of continuous
measurements in terms of quantum stochastic differential equations [13, 14, 17, 22,
24], a stochastic equation for the a posteriori states has been obtained [25-28]. The
main purpose of this paper is indeed that of clarifying the meaning of that equation
by presenting a natural derivation of it in terms of instruments, independently from
any notion related to quantum stochastic calculus, and by discussing some models.
Moreover, we shall discuss the connections between various aspects in the literature
concerning what can be called a quantum version of the theory of stochastic processes
(continuous measurements) and filtering theory {a posteriori states).

Let us start by recalling the important notions of instrument and of a posteriori
states. The notion of ‘instrument’ has been introduced in the operational approach to
quantum mechanics [1]. Let a quantum system be described in a separable Hilbert
space & and denote by %(#) and F () the Banach spaces of the bounded operators
on # and the trace-class operators, respectively. Let ({2, X) be a measurable space ()
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1496 A Barchielli and V P Belavkin

a set and T a o-algebra of subsets of {}). An instrument [1-3] £ is a map from X into
the space of the linear bounded operators on F(3) such that (i) F(B) is completely
positive [29] for any BeZ, (ii) Z; #(B;)p = F(J; B;)p for any sequence of pairwise
disjoint elements of £ and any p in F(¥) (convergence in trace norm) and (iii)
Tr{#(Q)p}=Tr{p}, Yo & T(¥).

The instrument .# is an operator-valued measure: (i) is the positivity condition, (ii)
is o-additivity and (iii} is normalization. The instruments represent measurement
procedures and their interpretation is as follows. (1 is the set of all possible outcomes
of the measurement ((£2, X} is called the value space) and the probability of obtaining
the result we B (BeX), when before the measurement the system is in a state p
(pe F(), p=0,Tr{p}=1),is given by P(Bip):=Tr{F(B)p}. Moreover, let us consider
a sequence of measurements represented by the instruments #,, %,,..., ¥, and
performed in the natural order (%, after #, and so on). We assume any time specification
to be included in the definition of the instruments (Heisenberg picture). Then, the
joint probability of the sequence of results w,€ B,, o€ B,,..., w,< B,, when the
premeasurement state is p, is given by

P(Bls BZ: LA ] Bnlp) =Tr{'ﬁn(Bn)°‘¢n—l(Bn—l)o' L °~¢1(BL)P}- (11)

If we consider the conditional probability of the results w,€ B,, ..., w, € B, given the
first result w, € B, we can write

P(B!’ BZ! Ly Bnlp)

P(B,|p)
= P(By, ..., B.|p(B)))
=Tr{F.(B.)e...oF:B,)p(B)} (1.2)

where we have introduced the statistical operator p(B,) representing the state after
the first measurement, conditional upon the result w, € B,. For a generic instrument
F and set B, the conditioned state p{ B} is defined by

$(B)p _ F(Blp
Tr{#(B)p} P(B|p)

Let us note that joint probabilities (1.1) preserve mixtures, by the linearity of the
instruments: for p and o statistical operators and 0=< A =1, we have

AP(B,,... B.lp)+(1=A)P(B,,..., B,Jo)=P(B,,..., B, Ap+(1-A)a). (1.4)

However, this property is not shared by conditional probabilities (1.2), by the definition
itself of conditioning, and, therefore, the expression (1.3) for the conditioned state is
not linear in the premeasurement state p, unless B=1{).

Formula (1.3} can be interpreted by saying that we perform some measurement on
a statistical ensemble of systems and select those systems for which the result w € B
has been found. Then, {1.3) is the state after the measurement of the systems selected
in this way and depends not only on the result w € B, but also on the perturbations
due to the concrete measuring procedure and to the dynamics. If we perform the
measurement, but no selection, we obtain by (iii} p(£2) = #({1)p. By the definition of
instrument, this quantity is linear in p and it is a statistical operator if p is a state. We
can call p(Q) the g priori state: if we know the premeasurement state p and the
measurement %, p({1) is the state we can ‘a priori’ attribute to our systems, before
knowing the result of the measurement.

P(B2a---;Bn|B1;p)E

p(B)= (1.3)
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Let us consider now the case of the most fine selection when in (1.3) the set B
shrinks to an ‘infinitesimally small’ set dw around the value w. According to the
discussion above, the quantity

F{dw)p
Tr{#{dw)p}

represents the state conditioned upon the result w € dw. The quantity p(w) is the state
one can attribute to those systems for which the result w has actually been found in
the measurement and for this reason we call it the a posteriori state [23].

More precisely, a family of statistical operators {p(w), w € {3} is said to be a family
of a posteriori states [30], for an initial state p and an instrument ¥ with value space
(£2,2),if (a) the function @ - p(w) is strongly measurable with respect to the probability
measure

plw)= (1.5)

u,(B):=Tt{#(B)p}= P(B|p) (1.6)
for the observable associated with the instrument % and (b) VY e B(¥), VBc X,

j Te{ Yo(o)}hp, (do) = TH{ YS(B)p}. (1.7)

Let us note that, by definition, the link between a priori and a posteriori states is given
by

p(Q)Eﬁ(Q)p=J‘ plojp,(dw). (1.8}
4]

Let us stress that (1.7) defines the a posteriori states once the instrument .# and the
premeasurement state p are given. On the other hand, if p(w) and wu, are given for any
p, (1.7) allows the reconstruction of the instrument . We shall make use of this in
the following sections.

Finally, let us note that there is no reason for p(e) to be a pure state if p is pure:
it depends on the concrete measuring procedure, Roughly speaking, p(w} is pure if
one has some property of minimal disturbance, some ability of the measurement to
give a maximum of information; we shall see various examples {p{w) pure and not
pure) in the case of continuous measurements.

2. Counting processes

The first class of continuous measurements which has been introduced in quantum
mechanics is that of counting processes {2, 4-9, 13, 17, 18, 28, 31-34]. One or more
counters act continuously on the system and register the times of arrival of photons
or other kinds of particles.

Let us consider the case of d counters. They differ by their localization and/or by
the type of particles to which they are sensible and/or by their method of operation.
We can describe this counting process by giving the so-called exclusive probability
densities (EpDs) [7,9). The quantity P;(0|p) is the probability of having no count in
the time interval (#,, t], when the system is prepared in the state p at time f,. The
quantity pr(ji, tsfa, f23 - s dm tal0)s k=1,...,d, (<<t <...<t,<t, is the
multi-time probability density of having a count of type j, at time !,, a count of type
Jy at time t,, ..., and no other count in the rest of the interval (1, {]. Davies [4] (see
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also [5-9]) has shown that these EPDs can be consistently described in quantum
mechanics in the following way.

Let Z,(t) be a Liouvillian (the generator of a completely positive dynamics [29]
on F()) and §(r), j=1,...,d, be completely positive maps on J(¥#). Let us
introduce the positive operators R;(¢) on # by

R;(t)= (1)1, (2.1)
For any operator & on (), its adjoint &' on B{¥) is defined by
Tr{Xslp}=Tr{psd' X} Yoe T(¥) VX e B(K). (2.2)

Finally, let ¥(t, t,), t=1,, be the family of completely positive maps on ()
defined by the equations

LA )= HDF 1) Pl ) =1d (23)
ot
\ o
A(0)p=ZLo(1)p—14 T (R(1), o). (24)
i=1

Here {a, b} = ab+ ba and Id is the identity map on F(#}. Then, the quantities
P (0]p) = Te{F(1, to)p} (2.5)
P:Q(jl! lt‘l ;jla 12; LI ;jm: tm'p)

=Tr{¥(1, tm)agjm(tm)‘gj(tms ’m—l)agj,,,_l(tm—:) L Fl, Il)o@jl(tl)y(‘l, 1)p}
(2.6)

(where f,<t,<t,<...<t,=14 j,=1,...,d) are a consistent family of EpPDs,

The whole statistics of the counts can be reconstructed from the epps. For instance,
the probability of m counts of type j in the time interval (1, ], # counts of type i in
the interval {1, t,] is given by

P(m!js (105 tl]; n, is (tl! tZ]‘p)

fy . ¥, "l Fn
=J. dr, j dr,._;... l{ dr, J' ds,, j ds,._,
I L ty fo fa

2
J‘ ds, p2(j, svsd, S25 -5 hSms b B2y oo 5 | Talp). (2.7)
o

In a similar way, all of the more complicated joint probabilities can be constructed.
One of the most siognificant nroblems treatad hy thic thearyv ig that of the slectron-

AL W MW LNWOL SIGULEIVINIEL LIV WIS LW Sy i il J RS Llaah Ui b LILSAIRARL

shelving effect or quantum jumps. An atom with a particular level configuration and
suitably stimulated by laser light emits pulsed fluorescence light with random bright
and dark periods. It is possible to use £,(#) to describe the free atom and the driving
term due to the laser and to use the operators #;(t) to describe the emission process.
Then, the full statistics of the fluorescence light can be computed and, in particular,
the mean duration of the dark periods [17-19]. Other apptlications to quantum optics
of the counting theory described here are given in [35-37].

Let us now consider the problem of the a posteriori states. Our counting process
can be considered as a stochastic process whose associated probability measure
(uniquely determined by (2.5) and (2.6)) is concentrated on step functions. Let us
consider f,=0 as the initial time. A typical trajectory o, up to time t is specified by
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giving the sequence (f,, #,; ja, L5 - .. ju, 1) Of types of counts and instants of counts
L <t<...<t, up to time t. Let w, be the trajectory we have registered up to time ¢
Then, the conditional probability P(0, (s, t+[lie,; p) of no count in the interval (2,
t+ 7], given the state p at time zero and the trajectory w,, is given by

_ S s s e e 3 dms
P(O, (t,r+t]fcu,;p)=por (:]]s 1s s:]na nlp) (2.8)
Po(dvs tis oo o3 Js talp)

(cf (1.2)). By (2.3), (2.5) and (2.6), we obtain immediately that the probability (2.8)
can be rewritten as

PO, (1, t+ 1w, p) =Tr{F(t+7, 1)p(1)} = P (0]p(1)) (2.9)
1
P(I) =m y(ts tn)ogj,,([n)'g’(tn: tn—l) .. '}j,(tl)y(‘tls O)P (2'10)

where C(t) is the normalization factor determined by Tr{p(#)} =1 {(cf (1.2), (1.3} and
(1.5)). Similar results hold for the other EPDs conditional upon some trajectory up to
time t. Therefore, all conditional probabilities can be computed by (2.5) and (2.6) if
one uses as the initial state the expression {2.10}. Equation (2.10) gives the state of
the system at time ¢ conditional upon the trajectory w, up to time ¢ (the a posteriori state).

The interpretation of (2.10} is that, when no count is registered, the system evolution
is given by #(4, 1;) and that the action of the counter on the system, at the time f in
which a count of type j is registered, is described by the map #;(7). However, (1, t,)
and #,(1} do not preserve normalization and the normalization factor C(t) is needed.
This is due to the fact that they are the probabilities (2.5) and (2.6) which have to be
correctly normalized and this is guaranteed by (2.1) and (2.4), connecting #;(¢) with
F(1, ty). According to this interpretation of (2.10), the state of the system in between
two counts is

(1) = F(t,1,)p(1,)
PUTTHS (1, )08}

where ¢, is the time of the last count and p(t,} the state just after this count. If we
denote Tr{R;(¢)p(f)} by (R;{1)), and differentiate (2.11), we obtain

dp(1)
di

(2.11)

d
=Lo()p(1) =2 ~§| {R; (1) = (R;(1)), p(2)}. (2.12)

Moreover, if at time ¢, we have a count of type j, the state of the system soon after is

gj(tr)p(tr) =}J(rr)p(tr)
Tr{F(t)p(t)}  (R(1),
Now the typical trajectory N;(t) (number of counts of type j up to time ¢),
i=1,...,d, of our stochastic process is a step function such that N;(t) increases by
one if soon after time ¢ there is a count of type j, otherwise N;(¢) is constant. Therefore,
the Itd differential

dN,(t) = N;(1+d1) - N(1) (2.14)

p(t,+dt) = (2.13)

is equal to one if at time f there is a count of type j and to zero otherwise. This gives
(dN;(#))* =dN;(1). Moreover, the probability of more than one count in an interval
dt vanishes more rapidly than dy, i.e. between dN; (1) and dN(1), i #j, at least one of
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the two must be zero. Moreover, d N;(t) d¢ is of higher order than dt and has to be
taken as vanishing. Summarizing, we have the It table

dN, (1) dN:(1) = 8; dN;(1) dN;(1)dt=0. (2.15)

By using these results we can rewrite (2.12) and (2.13) in the form of a single stochastic
differential equation in the It6 sense (dp(f}=p{t+dt}—p(1)):

dp(t}=F(H)p(t)dt+ 7 ( (( zp)()) (t)\(dN[,-(r)—{RJ,-(r)),dr) (2.16)
Z(t)p= Eo(t)p+2 (F(Dp —HR(1), p}) (2.17)
(R,-(!)),=Tr{R,-(t)p(t)}=Tr{£j(t)p(t)}- (2.18)

Indeed, when all the d N;(¢) vanish, (2.16) reduces to (2.12); when one of the dN,(1)
is equal to one all the other terms in the rus of (2.16) are negligible and we obtain
(2.13). Equation (2.16) was firstly obtained by quantum stochastic calculus methods
in [25, 28, 38, 39].

Formula (2.16) is the equation for the a posteriori states in the case of a counting
measurement: it determines the state at time t depending on the (stochastic) trajectory
up to time t. Let us stress that we know the solution of this equation: it is the state
{2.10). In any case, it is very useful to have the differential stochastic equation (2.16),
as we shall see in the rest of this section and in section 4.

Let {d N;{1)}(w,) be the mean number of counts of type j in the interval (¢, t+di]
conditional upon the trajectory e, up to time f Because probabilities of more than
one count in a small interval are negligible, we have

AN} =pi ' (j, tle()) dr=Tr{F(Dp ()} dr =(R;(1)), dr. (2.19)

In other words the quantities {R;{¢)} d¢ appearing in (2.16) are the a posteriori mean
values of dN;(1). Moreover, the differentials

dM(1) = dN,(1) —(R; (1)), (2.20)

appearing in (2.16), together with the initial condition M;(0) =0, define the a posteriori
centred processes M;(1), called innovating martingales.

Equation (2.16) is nonlinear, but it is mathematically equivalent to a linear one.
Let us introduce an arbitrary stochastic real factor ¢(t) and define the trace-class
operator ¢(#):=c(t)p(t). If we know (i} we can reobtain the state p(t) simply by
normalization. The factor ¢{t) can be chosen in such a way that ¢(¢) obeys a linear
stochastic differential equation; moreover, this choice is not unique. We shall do this
in a very convenient way: a new linear stochastic equation is obtained giving both the
a posteriori state p(¢) and the epDs (2.5) and (2.6) (cf [39]}). Let ¢(t) be a trace-class
operator depending on the trajectory w, and defined by ¢(1)=%(1, t,)e(1,) if 1, is the
time of the last count and by ¢(t, +dt) = r€;(f,)e(t.) if at time ¢, there is a count of
type j; 7 is an arbitrary parameter with dimensions of time, which disappears from
the physical quantities For the initial condition we take ¢(0) =

S F o P IR

By the definition of @{¢), the quantity
c() =Tr{e(1)} (2.21}
gives the EPDs (2.5) and (2.6): in the case of a trajectory w, containing no jump we have
c(#) = Po(0lp) (2.22)
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and in the case of a trajectory with a jump of type j, at time #,, ..., of type j,, at time
t,, we have

c(t)=7"poljr, s - o5 Jims tml0)- (2.23)

Moreover, by the definition of (1), c(¢) and p(r) the a posteriori state is
p(ty=q(t)/e(t). (2.24)
In the same way ag .er we can obtain the stochastic differential equation for

I wa plt),
¢ (1), which turns out to be {cf [28], equation (20))
do(1)= (z’u(r)qo(r)—% £ R, o)) di+ £ (000 p() AN, (229

By using Itd’s calculus for counting processes it is possible to verify that {2.21), (2.24)

and {2.25) are i..du.d equivalent to {2.16). Equation (2.25) determines all the prab-

abilities via (2.21)-(2.23) and the a posteriori states via (2.21) and (2.24). Equation
(2.25) is linear, once a realization N;(t),j=1,..., d, of the process is given. However,
let us note that the statistics of N;(t) depends in its turn on the premeasurement state
p, as shown by (2.5), (2.6) and (2.19). The possibility of finding a linear equation
mathematically equivalent to (2.16) means that p{?) is linear in g up to a normalization
factor asg snocected by {1.5)

ARWLULy &3 FuphWSlbie WY L1 )

Let us stress that, in general, (2.16) does not transform pure states into pure states.
This simply means that in the course of time we lose information due to some dissipation
mechanism, for instance the system interacts with some external bath, etc. In any case,
the situation in which pure states are preserved is particularly interesting. This is the
case [20, 21, 25, 26] when

Zolt)p = —i[H(1), p] £ =Z(npzZ,1) (2.26)
where Z(1) and H{:) are operators on %, H(1)'= H(t). Then, we have R;(1)=
Z,(1)'Z;(1) and

S

Z(tp=—ilH(t), p]+ )E (Z(DpZ;(1) =K Z(1) Z(1), p}). (2.27)

i=1

Then, (2.16) becomes

d
dp(0)=~i[H(1), p()) d1 =3 T {Z;(1) Z(1) —(Z(1)' Z,(1)),, p(1)} dt

J":

Z(0p()Z(n)' )

( 4-1:’4\?'7( 3y p(t) dM(t)' (2-28)
\ (LT £ (E)) /

By using the It formula (2.15), one can prove that p(t+dt)* = p(1+d#),if p(£)* = p(2);

therefore, {2.28) transforms pure states into pure states and it is equivalent to a stochastic

differential equation for a wavefunction. Indeed, let {1} # satisfy the ‘a posteriori

Schrodinger equation’ [28, 39]

/ d A\
dw(r)=(—iH(r)—% ) (z,-(r)*z,-u)—<zj(r)*z,-<r)>,))¢(r)d:

i=1

.2 _ ) N,
5 (g oo
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with §z,.(:)*z,.(,)>, = (W Z(1) Z(1)p()); then, by (2.15), p(1) =|w())(1)] satisfies
(2.28).

Itis interesting to note that in between two counts (when d N;(¢} = 0) (2.29) becomes
a nonlinear Schrédinger equation of the type studied, for instance, in {40, 41]. However,
this equation has a quite different interpretation in the quoted references, where the
problem is to find evolution equations compatible with the Hilbert space structure and
preserving ‘properties’ in the sense of quantum logic.

Now we have the a posteriori states defined by (2.16) and a probability measure
on the trajectory space, which is implicitly defined by the EpDs £2.5) and (2.6). Therefore,
we can reconstruct the instruments associated with our measurement by means of (1.7).
As in [28, 39], we shall do this by using the notion of the characteristic operator, a
concept introduced in [10-13), and the 116 formula for counting processes.

Let f be any function of the trajectories of our stochastic process and let us denote
by {f). the mean value of f with respect to the measure associated to the EpDs (2.5)
and (2.6), The quantity

a001=(e(i T | k01 aN0)) (2:30)

is called the characteristic functional of the process. Here k(s) is a test function, i.e.
k;(s) is a real compact support C*-function on (0, +00). ®,[k] determines uniquely
the whole counting process up to time t: roughly speaking, &,[k] is the Fourier
transform of the probability measure of the process. More explicitly [17], we have

o [K]=Pi0lp)+ £ % [ drmj”dzm_l

m=1{j}=1 0
.. L!z d, exp(i él kj,(tr))pb(jl, tidas By e s dms Bl P)- (2.31)
Let us set now
Vilk] =exp(i _fl J‘O' k(s) d;\;(s)). (2.32)
=

According to (1.7), we can write

(Vilklp(e))a=%[k]p (2.33)
where p(t} is the a posteriori state at time ¢ and %,[k] is an operator on J(#)} which
represents the ‘functional Fourier transform’ of the instrument .#, associated with our
measurement up to time £ The quantity %,[k] can be called the characteristic operator
and it is the operator analogue of the characteristic functional of a stochastic process
[11-13]. By the normalization of p(¢) and (2.30) and (2.33), we obtain

@ [k]=Tr{%[k]p}. (2.34)

An equation for %[k] can be found by differentiating {2.33). The differential of
p(t) is given by (2.16), while the differential of Vi[K] is

dV,[k] ]\ ¥ (e-*f->-1)dw,.(:)). (2.35)

This formula can be easily obtained from (2.32) by expanding the exponential and
using (2.15). By using the formula

d(V.[klp()) = (AV.[k]Dp (1) + Vi[k)(dp(0) +(dVi[k])(dp(s))  (2.36)
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where the Itd correction (dV,[k])(dp(t)) has to be computed by means of the Itd table
{2.15}), we obtain

d
d(Vi[k]p(D)}= Va[k][g(t)P(l)df"‘_Z (e~ 1)8(6)p(r) dr

d
+3 (e""f‘”’M—p(r))(dM(r)—<R,(:)>, d:)]. (2.37)
i= (R;(£)},

Now let us take the stochastic mean of (2.37). We compute this mean in the
following way. First we take the mean with respect to the probability measure on the
future (with respect to t) conditional upon the given trajectory. All the quantities on
the rus of (2.37) depend only on the past (they are adapted), but the quantity dN;(¢},
whose a posteriori mean value is just (R;(t)), d¢ (2.19). Therefore, the last term in
(2.37) vanishes. Then, we take the mean value also on the past and, by (2.33), we obtain

Gk = (R () K] (239)

%,(k(t))=£f(1)+_§ (e —1) g(¢). (2.39)

P
Together with the initial condition
%, k]=1d (2.40)

(which follows from the definition (2.33)), (2.38) determines uniquely %[k] and
implicitly the instruments on the trajectory space. This kind of equation has been
obtained for the first time in [13].

If no selection is made according to the results of the measurement (let us say the
results are not read), the state of the system at time ¢ will be (cf (1.8))

a(t) =(p(t)x (2.41)

a(t) is the a priori state for the case of the continuous measurement described in this
section. According to (2.32), (2.33), (2.38) and (2.39) the a priori states satisfy the
quantum master equation

d
3 7(0=20a(n) (2.42)

with the new Liouvillian (2.17), the unperturbed Liouvillian £y(t) corrected by the
measurement effect term ZJ‘L, (#F(1)p ~3{R;(1), p}). The fact that we have obtained a
linear equation for the a priori states is due to linearity and normalization of the

instruments (cf (1.8)}).

3. An example of a counting process: a two-level atom

Let us consider an example of a counting measurement on the simplest quantum
system: a two-state system, described in the Hilbert space % =C* We can think of a
two-level atom, an unstable particle, a spin, etc. While the general case could be
handled, for concreteness we treat a two-level atom with pumping and damping. This
section should be considered simply as an illustration of the theory developed before,
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The (time-independent) unperturbed Liouvillian is given by

i
$0P=_Ew[0'3,P]+a¢OP_%{R0a Pl (3.1
Fop=A 0. po_t+A_o_po, (3.2)
Ro=Fhoo=3A (00— 03} +3A_(oo+ 0y). (3.3)

Here w >0, A, 20, o;, i=1, 2, 3, are the Pauli matrices, gy is the 2x2 identity matrix
and o, =3{o, Lio,).
We consider a single counter {d =1) and take

j1p=A10'_po'+ I\.g>0 (3.4)

the map #, describes the emission of photons (or other types of particles), which are
then counted by some electronic device. In the present case, the rate operator (2.1) is

R = Fioo= L 0,0_=3r,(03+ o) (3.5)
and the generator ¥ (2.17} of the full dynamics is

Lp=—70loa, 0]+ T (Fp 4R, p}). (36)

We can interpret the terms with A, as pumping, the terms with A_ as incoherent
damping and the terms with A, as electromagnetic decay; I'= A, is the electromagnetic
transition rate. If A, =0, we can interpret the system as a Wigner atom (or another
unstable particle). In this case the electromagnetic transition rateisC=A_+A,; A_# 0
means that not all the photons are collected by the photocounter; e = A,/(A_+ A} is
the efficiency of the counter {17].

In order to perform computations, it is convenient to represent self-adjoint trace-

class operators ¢ as
¢ =Ycopy+to,+iYo_+ £o3) ¢, £eR LeC, (3.7)
The operator ¢ is positive if ¢ = (£2+]{|*)"/? and it is a density matrix if also ¢=1.

Let us consider (2.25) and represent ¢(#) in the form (3.7) with ¢- ¢(1), { = £(1),
£ £(1). The stochastic equation (2.25), choosing r=A7’, becomes

de(t) +3x,{c(8) + £(1)) dr =3(£(1) —c(£)) AN (1) (3.8)
dé() +{(2x =3 )EB) + (@ +34,)c(D)] At = —3(c(1) +3£(2)) AN (1) (3.9)
dg () + (i + () dt =~£(1) AN(2) (3.10)

where k =3 A, +A_+A), a=A_—A,. It is convenient to rewrite (3.8) and (3.9) in
terms of the stochastic parameters

(1) =3(c(2) — £(1)) mit) =3{c(t)+ &(1)) (3.11)
this gives
dmro( )+ (pymolt) — wymy (1)) di = (m, (1) — my())} AN(1) (3.12)
da {0+ (pym1) —ryme(0)) dt = —m (£} AN (1)
where =Kk =A,, Ky =A_, uy=A;+A_.
The solution of (3.10) is very simple:
A (1] if 1=t
£(I)=[0 ‘o ifi> (3.13)
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where 1, is the instant of the first jump of N(r). Let us denote by =;(t|a, b} the solution
of (3.12) with dN(¢#) =0 and initial conditions 7,(0) = a, ,(0) = b. Then, the solution
of the stochastic system (3.12) is

. { mllm0), m@)  if i<t (14
mi{t — t,|m(¢,),0) if f,<t=1,, r=1
where t, are the instants of the jumps of N(t).
Fram {72 21Y {724 and (1 7) the matrix elements of the a posieriori state Al t) are
LAWULIL AL Ll} VL™ ) allud \J, l}, LILG IL1ALlIA VIGIIIGLILY Ul LIV o PU-)IC‘IU'I' DLW pFLE g
given by
(1]p(D|1)y=Tr{3(go+ o3)p(8)} = m, (1) / c(t)
(0] p()I0y=Tr{z(oo— 03) p(1)} = mo(2)/ (1)
2 : ¢ (3.15)

(1]p()]0)y= Tr{a_p(t)} = {(1)/[2¢(1)]
Olp()|1)=Tr{o.p(1)} = {()*/[2¢(1)]

with c(#) = mg()+ m,(t). Equations (3.13)-(3.15) show that at a jump of N(r} the
system surely poes into the ground state, since { =0 and #, =0, and that for > ¢, the
system is surely in a mixture of ground and excited states, since { =0. The EPDs are
implicitly given by ¢(t) = my(t)+ =, (1), T=A7", (2.22), {2.23) and (3.14).

Just as an example, let us discuss the case of the Wigner atom (A, =0). Equations
(3.14) become

mo(0)+(A_/ 2k M1 — e ™32, (0) if 11,
(1) =4 e >, (0) ift,<t=t, (3.16)
0 ifer>1,

with k =3{A_+ A,), m{0) + 7,(0) = 1. Equations (3.15) give p(t) = |0X0| for > ¢, after
the first registered emission the atom is in the ground state. Finally, the Epps are

1 —2xr
Po(0lp) =wO(0)+2—K(L+:\. e 2"} (0) (3.17)
Poljrs talp) = Ay e72v i (0) (3.18)
PolJistis - 3 jms tmlp)} =0 m=2, (3.19)

These equations imply that there is, at most, one count, as must be the case since there
is no pumping.

4, Diffusion processes

In the classical case, Gaussian diffusion processes can be obtained from Poissonian
counting ones by centring and scaling. Similarly, in the quantum case we can obtain
some kind of ‘quantum diffusion measuring processes’ from the quantum counting
processes of section 2,

Let us take the maps #;(t), describing the action of the counters, of the following
form:

F(0p= (zj(r)+§Js(r))p(zj(r)*+§ﬁ(r)*) (4.)
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where the Z(¢) are operators on #, the f; are complex functions and £ > 0 is a parameter
which we want to vanish at the end. Moreover, instead of %,(¢), we take as the
unperturbed Liouvillian the expression

1 d
L300 = Luln)p+5- T HO*Z( =I5 Z (1), ). (42)

Then, the generator £(t) of the a priori dynamics (cf (2.17) and (2.42)) becomes
d

Lo =ZLy(t)o+ _E' (Z(DoZ(tY -HZ(1)'Z (1), o}). (43)

j=

The expression (4.2) has been assumed in order to have #{(r) independent of the
parameter &, Physically, the structure (4.1)-(4.3) is related to heterodyne detection [42].

Moreover, we make a linear transformation on the outputs: we call Y;(¢) the new
observed processes, related to the oid processes N,(1) by

1
de(r)::edl\{,-(r)—;|fj(r)|2dt (4.4)
this means that we rescale the outputs and subtract a known deterministic signal. Then,
by (4.4} and (2.15), we obtain
dY;(ndYi(n)= sz&j dNi(t)=¢€b,; dY;(1)+ 8,][);(:)|2 dt. (4.5)

In order to have the characteristic operator associated with these new processes,
we have to rescale the test function k{s), appearing in (2.30), (2.34) and (2.38)-(2.40),
by changing k;(¢) into ek;(t} and we have to shift the mean values of eN;(1} as in (4.4)
by adding to %, (k(¢)}) the term —i/ e =, k;(1)| f;(¢}|>. The final result is that the generator
H.{k(t)) of the characteristic operator %,{k] becomes

d
H(()p = 200+ T (~Ho0 A (OFp+ik (0
XUV Z (00 +DZ )+ 1) Z1)pZ0)

2 (D 1 ik (VD200 +(DZ, ()

'*'é | £ S — 1 —igk(1) +%82k,~(t)2)p). (4.6)

. Also, (2.16) for the a posteriori states can be expressed in terms of the new processes
Y; (). By (2.1), (2.18), (4.1), (4.3} and (4.4), we obtain

dp(1)=Z(1)p(s} dr+ i] [£Z:(0)pZ;(1)' — 6(Z() Z;(1)p (1)

+HOHZ(D = (ZN)p(D)+ (D (Z,(1) =(Z(1)))]
x(eXZ,(1)"Z(1)),+ efi (Y Z () + (AN Z() )+ 1D

X (dYi(1) = e{Z(1) Z, (), dt = £{OXZ(0)), dr = f(1(Z()"), d1) )

where, for any operator X on &, (X), is defined by
(X)), =Tr{Xp(1)}. (4.8)
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Moreover, from (4.4), (2.19) and (4.1), the a posteriori mean values of dY(f) are
given by

(@YF(O) @) =(fUNZON, + LN Z(),) di + e(Z;(1) Z(1)), dr. (4.9)

We assume |f;(#)| # 0, V. From (4.5)-(4.7) and (4.9), it is apparent that the limit
£l0 exists. In this limit the characteristic operator is given by (2.38) and (2.40) with
the generator

d
H(k(tho=2L(t)p+ _gl [=3k (O S(OF p +ik (D (F(*Z(1)p +£(NpZ{D)].  (4.10)

By setting Y;(t) =lim,, Y;(r), the equation for the a pesteriori states becomes

dp(1) = £(1)p(1) dr
d
+ 3 LA Z 0 ~(Z e+ £(Dp((Z(0) ~(Z(1)))]

1

Xm (@Y;(0) = f(NZ(0)), di = (1K Z, (D), do). (4.11}
il
Moreover, the a posteriori mean value of d Y;(1) becomes

(dY;())(w,) =2 Re(f;(1)(Z;(1)),) di (4.12}
and the processes M;(1), defined by

dM; (1) =d Y;(¢) -2 Re( (1) Z(1)),) dt M;(0)=0 (4.13)

are again innovating martingales. Finally, the multiplication rule for the differentials
dY;(¢) is the limit of (4.5) under £l0; also, by taking into account the second of
equations (2.15) we have the It table

dY, (1) dY,()=8;|f(Hf dt dY;(rydr=0. (4.14)

By the procedure we have followed, it also turns out that the connection between
a posteriori states p{r) and characteristic operator %,[k] given by (2.33) continues to
hold, but now p(r) satisfies (4.11), ¥,[k] satisfies (2.38) and (2.40) with the generator
given by {4.10), and V/[k] is given by

d

vik)=exp(i £ j k() 4%(5)). (4.15)
i=iJdo
Alternatively, (2.33) can be proved by taking the stochastic differential of both of its
sides, as was done in the case of counting processes.

By taking the mean value of (4.12) on the past, we obtain

L (0O =THUO* Z(+ D Z (1) (4.16)

where o(t) are the a priori states satisfying (2.42) with Liouvillian {4.3). The same
result can be obtained by functional differentiation of the characteristic functional
Tr{¥r[k]p}, T > ¢, with respect to k(1) [11].

Equations (4.15) and (4.16) show us two things. First, our.continuous measurement
gives the statistics of the generalized derivatives [43] y;(r) = Y,(t) (or of the increments
d Y;(#)) more than the statistics of the Y;(¢) themselves. The same was true in the case
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of counting processes, but in that case this difference was irrelevant because we had
the natural initial condition N;(0) = 0. Second, (4.16) can be interpreted by saying that
y;(t) is the output of a continuous measurement of the quantum observables (self-
adjoint operators) f;(1)*Z;(t) +)j(t)2j(t)'r, which are, in general, non-commuting [10-
12, 22-25).

Measuring processes defined by a characteristic operator with a generator of the
type (4.10) were introduced in [10- 12] and (4.11) was obtained by quantum stochastic
calculus methods in [25-27, 38, 44]. By linear transformations on the outputs, the most
general diffusive case can be reached; moreover, by taking prescription (4.1) only for
a subset of the #;, mixtures of diffusive and Poissonian contributions can be obtained
[38]. 1td equations for the a posteriori states in the purely diffusive case have also been
considered by Didsi [45-47].

As in the case of countmg processes, there exists a (non-unique) linear stochastlc

a a1

wati athomati v anniuvalant tn fA 113 For inst
Lf\.lual,lull ulu\.u\-ujau\.«all_y \v\lu YVELIn Il LW T.Llt. B AL1D4

operator satisfying the equation [38]

de(t)=Z(N)e(1) di+ Z (f(r)Z(!)qo(fo( )*cp(t)Z(f) )dY(f) (4.17)

and set c(f):=Tr{e(n)}. Then, by Itd’s calculus, one can show that p(t)=¢(t)/c(t)

satisfies {4.i1}. The same commenis apply io the iinear equaiion {4.17) as to {2.23}.
In the case of an unperturbed Liouvillian of a purely Hamiltonian form,

Fo(t)p = —i{H(1), p] (4.18)

(4.11) transforms pure states into pure ones; to prove this it is sufficient to show that
p(t+dit)*=p(t+dt) if p(1)* = p{t). In this case, which we can call complete measure-
ment, {4.11) is equivalent to a siochastic differential equation for a wavefunciion, as
in the case of counting measurements. Indeed, let ()€ ¥ satisfy the ‘a posteriori
Schradinger equation’ {26, 44]

dy(t) =~ (IH(I)+ ¥ (Z(0)'Z(1) - AZ ()", Z, (1) +{Z;(2)), IZ)) (1) dt

j=1

ilf( (20 =2
QYD) —f(OHZ (), At~ f(NZ(1)), d1) (4.19)

with (Z,(1)), =(()Z,{t}¢(1)); then, by Id’s calculus, p(1)=|¢{t)}(¢(t)| satisfies
{4.11).

It is interesting to note that stochastic equations of the type (4.11) and (4.19), with
£,(t)=1, have appeared in the literature also in connection with dynamical theories of
wavefunction reduction [48-52]. The idea is that the wavefunction reduction associated
with a measurement is some kind of stochastic process and an equation of the type
(4.19) is postulated. Apart from the different interpretations, another important
difference is that in the dynamical reduction theories the noise comes from outside,
while for us it is determined by the system itself.

Sometimes it is useful to have at our disposal a complex version of diffusion
processes. Let us consider the case of an even d. By redefining 4 and the index j, the
sum appearing in (4.10) and (4.11) can be reorganized as a double sum over A, A =1,
2,and j, j=1,..., d Then, we take f,,(1) =1, f;(r) =1, Z;{1) = Z;(r) = Z;(1) and set
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Kk (1) = k() +iko; (1), Wi(1) =3(Y,;(1) +iY5(1)). Then, (4.3), (4.10)-(4.12) and (4.15)
become

L= Lo +2 T [Z(DeZ(1) ~HZ,1)'Z(1), o] (4.20)

(o= Lo+ I [=H(Fp +il (1 Z (10 + (102 (1)")] (4.21)

j=

d
dp(t) =£(0)p(1) dt+2 El ((Z{(1) ={Z () )e (AW, ()* —(Z, (1)), d1)

(AW (1) —(Z, (1)), dD)p (I Z,()" —(Z,(1)",)] (4.22)
dW(1)dWi (=0 dW,(0)* dW, (1) =18, dt dW;(1)dr=0 (4.23)
@W (O w,) ={Z;(1)), d¢. (4.24)

By taking the mean value of (4.24) on the past, we obtain
d
E;(“G(t))sFTr{Zj(t)o(t)} (4.25)

which allows us to interpret the equations above as describing a continuous measure-
ment of the non-commuting, non-self-adjoint operators Z;(t). Filtering equation (4.22)
for linear systems (quantum oscillators) was introduced in [21, 22].

5. An example of a diffusion process

Let us close the paper with a simple example of the theory developed in section 4,
using the complex version (4.20}-(4.25). A real-valued Gaussian example for an
observed particle in a quadratic potential can be found in [25,53]. We consider a
single-mode field in a cavity and with a source

H(tY=wa'a+g(t)a'+g(t)*a w >0 (5.1)
interacting with a thermal bath
Lo(t)p=—ilH(1), pl+ A ([ap, a'1+[a, pa )+ A(la’p, al+[a’, pa)) (5.2)

Ay, A;=0 and subjected to the measurement of a single complex observable (d =1)
proportional to the annihilation operator

Z=na neC. , (5.3)

The fact that Z is proportional to @ means that we are considering a passive, purely
absorbing detector.
By scaling the output in such a way that we have exactly a measurement of a

(AW(t}/ n->dW(1), n*c(t) > x(1)), (4.20)-(4.25) become

L(1)e = Loty +|n*([ac, a']+[a, 0a’]) (5.4)
Hix()*, x(t))p=2(t)p —% xlt) p+i(x(ty*ap+x(1)pa’) (5.5)

dp(t) = £(1)p(t)y dt + 2|9 (a (@) )p()(dW(D)* —(a"), d1)
+(dW(t)—(a}, dt)p(t)(a"—{a")] (5.6)
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dW()2=0 [dW(r)l2=2|‘:|2 dW(1)de =0 (5.7)
W @) =(@) dt (W), =Trlao(n) (5.8)

Equations (2.38), with generator {5.5), and (5.6) can be solved by antinormal
ordering expansion of trace-class operators. Let us define on () a ‘tilde’ operation
by ¢ e T(H) > ¢(£*, 8),

G(£*, €)= Trle ™ o e 714} (5.9)
which can be inverted by

1 ie*a icat
¢ =;J dog €™ e B¢, ¢). (5.10)

Let us set
w(t)=ple* k; )=%4[x* k]p (5.11)

then (2.38) and (5.5) give, by standard computations,

%5(-5*, £ 1) = (~(iw +3T) £%0* + (iw —4T)£a — k(1)*3* ~ k()5

— 20047~ g(1)E¥ + g () = 2x(t)/ nlP )G (£*, & 1) (5.12)
where 8=9/3¢, 3% =0/9£* and
T=2(In*+A,—Ap). (5.13)

We suppose [ to be strictly positive.
If the initial condition is ‘Gaussian’,

p(E*, &) =expl—i(£ ao+ £ad) ~HEF uo+ Eud) — 1€ v0] (5.14)
then ¢ maintains this structure at any time. Indeed, by inserting
GUE, £ 1) =exp[—i{£*D(1) + £c()®) —HXd()+ Ed (DN ~ | () -h(D]  (5.15)

into (5.12}, we obtain the differential equations for the coefficients (f is real):

b(1)=—(iw+iT)b(t) +ix(t)*d(t) +ix () f (1) —ig(t) (5.16a)
() = —(iw +3D)c(t) —ix (O)*d (1) —ix(t) f(t) —ig(?) (5.16b)
d(1)=—(2iw+)d(r) (5.16¢)
F()==Tf(1)+24 (5.164)
h(1) = —ix()*b(1) —ic(t)c()* +3(t)/ 0. (5.16¢)

The solution of these equations can be easily written down.
The characteristic functional of our generalized process [43] W(t) is given by (see
(2.34) and (2.40))

@ [k*, k] =Tr{p(k*, «; )} =F0,0; 1) =e"” (5.17)



Measurements continuous in time and a posteriori states 1511
with

h(t)y=-i J.‘ ds(x(sya(s)+k(s)a(s)*) +J.l ds ds'(x(sY*k(s)A (s, 5)

o
+3x(5)x ()AL, ') +3r () K (s'Y*AL(5, 5)) {5.18)
a(t)=e eI, —j J-l ds g(s) ettt/ (5.19)
0

A(s, 5} :E]}T—}F S(s—~s5)+B(s—sye TR Cgh
+ 35"~ 5) e0TTRETN O (5} (5.20)
C(s)=g[h—‘t+(vn—2—;t) e {5.21})
Ay(s, 5) = e~ T/ (5.22)

where @ is the usual step function. ®[«*, «] is the characteristic functional of a
Gaussian complex process with covariance (5.20), (5.22) and (a priori) mean values

%<W(:»m=i O ic*, x| wemmo=Te{ac (1)} = a(r). (5.23)

_o
Sic(1)
The a priori states are given by o (1) = 4,[0]p or (&%, &, 1) = ¢{&*, £, )| —wr=0 By
(5.15) and (5.16) we obtain
G(£*, & ) = exp[—i(£*a (1) +cc) =3 ™ o+ co) — 147 C(1)]. (5.24)
This gives
Tr{a'ac (1)} = C(t) Tr{a o (1)} = exp[—2(iw + i) 1] 0. (5.25)

Note the links between the covarial}ce (5.25) of the a priori states o(t) and the covariance
(5.20) and (5.22) of the process W(r).
By the “tilde’ transformation (5.9}, we can also solve the equation for the a posteriori
states (5.6). From (5.6), (5.9) and (5.10) we obtain
dp(e*, £ 1) =[~(iw+iT)£** + (iw —3T) €0 — 20| €] — g(1)€* + g (1)*€]
x p(£%, & 1) di+ 2|9 [(dW(1)*~(a"), dr)

x (ig* = {a),) + (A W(1)—(a), dt}(ia—(a"))15(£*, & 1). (5.26)
This equation can be rewritten in terms of the stochastic function
I(E*, & t)=—In p(£*, & 1). (5.27)

By using Itd’s formula dg/p = —d!+$(d!)?, which in turn implies (dg/5)*=(dl)?, and
I18’s table (5.7), we obtain

dl=[-2[n|** sl — (i + 3T} E*d* 1+ (iw ~30) £l + 21, €]
+g()e*—g(0)*¢ =2 a), [ de + 29
x [(ia*1+{a)) dW(£)*+ (ial+{a",) dW(D)]. (5.28)
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With the initial condition (5.14) the solution of (5.28) remains quadratic in ¢ and
£*. Indeed, let us write

IEX, & 1) = H&Xa), + EaD) )+l + Eu(D)*) +| 2 (1) (5.29}

where v(t) = 0; the term independent of £ is lacking because of normalization of p(t)
and the linear term must have just the form we have written because (a), is the a
posteriori mean value of W{t). By inserting (5.29) into (5.28} and equating the

coefficients of the came arder in £ and £% we obtain
coemaie the same order in & and ¢, we obt

1Eng WAL Qi

da), +[(iw +31")a), +ig(s)] dt

=2 [ HdW(D* —(a"), dt) + »(D){dW(1) —(a), d1)] (5.30)
d
a—t#(r)'*(2iw+F)u(!)=—4ln|2u(t)V(t) (5.31)
d
3; V(OFTw(0) = =2n (O + w(1)) +244 (5.32)

with {a"), = (@)* and the initial conditions (@), = aq, w(0)= g, v(0) = w,.
In the case u, =0, we obtain w(1) =0 (the stationary solution of (5.31)) and (5.32)
becomes

%v(t)+FV(t)=—2|n|2v(1)2+2AT (5.33)

which is Riccati’s equation and has the stationary positive solution v

172
vm=#[(l+l6|n|zlk_—,g) —l:]. (5.34)

Equations (5.30) (for u =0) and (5.33) were obtained for the first time in [21, 22, 24]
as optimal filtering equations for linear systems.

After a transient, any memory of the initial condition is lost. The characteristic
functional is given by (5.17) and (5.18) with a priori mean values

rt
a(t)= —i J eA(im+I'/2}(r—S]g(s) ds (5‘35)
o]
and covariance A,(s, s') =0,
1 2A . 0 .
Afs, s") = T 5(s—s" +—r—t g~ ([/Ds=s] g —iwls =51 (5.36)

The a priori states are given by
Gl €¥, &5 1) = exp(—i(f"‘a(r)Jrfar(r)"‘)—z—ljft Iélz) (5.37)

while the a posteriori states are
500(§*s &)= CXP[—i(f*(ﬂ)r + ‘f(aT>r) - Vuolflz] (5.38)

with a posteriori mean values

{a), = ,[ expl—(iw + 1T+ 2| n[?. ) (1 - $))(~ig(s) ds + 2| ve dW(s)). (5.39)

0
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Note that v, >2A,/T" for A;>0 and v, =0 for A;=0. In this last case the asymptotic
a priori and a posteriori mean values coincide (@ (t)={(a),} and the same holds for a
priori and a posteriori states

Too(1) = poo( 1) = (1)K (1)] (5.40)

where |a) denotes the usual coherent states and a(t) is given by (5.35).
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