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Abstract. Measurements continuous in time have been consistently introduced in quantum 
mechanics and applications worked out, mainly in quantum optics. In this context a 
quantum filtering theory has been developed giving the reduced state after a measurement 
when a certain trajectory of the measured observables is registered (the oposteriori states). 
In this paper a new derivation of filtering equations is presented for the cases of counting 
processes and of measurement processes of diffusive type. It is also shown that the equation 
far the a posteriori dynamics in the diffusive case can be obtained, by a suitable limit, from 
that in the counting case. Moreover, the paper is intended to clarify the meaning of the 
various concepts involved and t o  discuss the connections among them. As an illustration 
of the theory, simple models are worked out. 

1. Introduction 

Usually in quantum mechanics only instantaneous measurements are considered but, 
by using the notion of instrument [l-31, measurements continuous in time have been 
consistently introduced [2,4-151 and applications worked out [2,7,9,12,16-191 (see 
also [20-23]). 

Now a natural question is: if during a continuous measurement a certain trajectory 
of the measured observable is registered, what is the state of the system soon after, 
conditional upon this information (the :a posteriori' state)? By using ideas from the 
classical filtering theory for stochastic processes and the formulation of continuous 
measurements in terms of quantum stochastic differential equations [13, 14, 17, 22, 
241, a stochastic equation for the a posteriori states has been obtained [25-281. The 
main purpose of this paper is indeed that of clarifying the meaning of that equation 
by presenting a natural derivation of it in terms of instruments, independently from 
any notion related to quantum Stochastic calculus, and by discussing some models. 
Moreover, we shall discuss the connections between various aspects in the literature 
concerning what can be called a quantum version of the theory of stochastic processes 
(continuous measurements) and filtering theory ( a  posteriori states). 

Let us start by recalling the important notions of instrument and of a posteriori 
states. The notion of 'instrument' has been introduced in the operational approach to 
quantum mechanics [ 11. Let a quantum system be described in a separable Hilbert 
space %!and denote by B ( Z )  and Y(Z) the Banach spaces of the bounded operators 
on Xf and the trace-class operators, respectively. Let (Cl,  X) be a measurable space (a 
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a set and X a u-algebra of subsets of Cl) .  An instrument [I-31 9 is a map from Z into 
the space of the linear bounded operators on F(%) such that (i) 9 ( B )  is completely 
positive [29] for any B E X ,  (ii) Z j 9 ( B ; ) p = 9 ( u ; B j ) p  for any sequence of pair& 
disjoint elements of Z and any p in Y(%) (convergence in trace norm) and (iii) 

The instrument 9 is an operator-valued measure: (i) is the positivity condition, (ii) 
is u-additivity and (iii) is normalization. The instruments represent measurement 
procedures and their interpretation is as follows. Cl is the set of all possible outcomes 
of the measurement ((a, X) is called the value space) and the probability of obtaining 
the result w E B ( B E  Z), when before the measurement the system is in a state p 
( P E  T(X),p>O,Tr{p}= l),isgivenbyP(B/p):=Tr{9(B)p}.Moreover,letusconsider 
a sequence of measurements represented by the instruments .a2,. . . , 9" and 
performed in the natural order (9,  after 9, and so on). We assume any time specification 
to be included in the definition of the instruments (Heisenberg picture). Then, the 
joint probability of the sequence of results w ,  E B , ,  W,E B,, . . . , w. E B,, when the 
premeasurement state is p. is given by 

A Barchielli and V P Belaukin 

Tr(9(n)p}  = Trip}, V P  E F(W. 

P ( B , ,  B,,. . . , B,lp) =Tr{$ , (B. ) .9 . - , (B. - , ) . .  . .n$t(Bl)p). (1 .1 )  

If we consider the conditional probability of the results W,E E > , .  . . , w. E B, given the 
first result w ,  E E , ,  we can write 

= P ( B 2 , . . . , B n I p ( B i ) )  

= T r { 9 a , ( B , ) o . .  . 0 9 , ( B 2 ) p ( B , ) )  (1.2) 

where we have introduced the statistical operator p ( B , )  representing the state after 
the first measurement, conditional upon the result w ,  E B,. For a generic instrument 
9 and set E, the conditioned state p ( B )  is defined by 

Let us note that joint probabilities (1.1) preserve mixtures, by the linearity of the 
instruments: for p and U statistical operators and Os A S  1, we have 

AP(B ,,.._, B , I p ) + ( l - A ) P ( B ,  ,..., B . I u ) = P ( B ,  , . . . ,  BJAp+(l-A)u).  ( 1.4) 

However, this property is not shared by conditional probabilities (1.2), by the definition 
itself of conditioning, and, therefore, the expression (1.3) for the conditioned state is 
not linear in the premeasurement state p, unless B = Cl. 

Formula (1.3) can be interpreted by saying that we perform some measurement on 
a statistical ensemble of systems and select those systems for which the result w E B 
has been found. Then, (1.3) is the state after the measurement of the systems selected 
in this way and depends not only on  the result w E E, but also on the perturbations 
due to the concrete measuring procedure and to the dynamics. If we perform the 
measurement, but no selection, we obtain by (iii) p( iZ)  = $(n)p. By the definition of 
instrument, this quantity is linear in p and it is a statistical operator if p is a state. We 
can call p(Cl) the a priori state: if we know the premeasurement state p and the 
measurement 9, p ( n )  is the state we can ' a  priori' attribute to our systems, before 
knowing the result of the measurement. 
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Let us consider now the case of the most fine selection when in (1.3) the set B 
shrinks to an 'infinitesimally small' set d o  around the value w. According to the 
discussion above, the quantity 

represents the state conditioned upon the result w E do.  The quantity p ( o )  is the state 
one can attribute to those systems for which the result w has actually been found in 
the measurement and for this reason we call it the a posteriori state [23]. 

More precisely, a family of statistical operators {p(w), w E n} is said to be a family 
of a posteriori states [30], for an initial state p and an instrument 9 with value space 
(0, X), if (a) the function w + p ( o )  is strongly measurable with respect to the probability 
measure 

&,(E) :=T@(B)pI= P(Blp) (1.6) 
for the observable associated with the instrument 9 and (b) V Y E  B ( X ) ,  VBEX.: 

Tr{ Yp(w)}l*Adw) = Trl Ys(B)p}. (1.7) 

Let us note that, by definition, the link between a priori and a posteriori states is given 
by 

Let us stress that (1.7) defines the a posteriori states once the instrument 9 and the 
premeasurement state p are given. On the other hand, if p ( o )  and @p are given for any 
p, (1.7) allows the reconstruction of the instrument 9 .  We shall make use of this in 
the following sections. 

Finally, let us note that there is no reason for p(w) to be a pure state if p is pure: 
it depends on the concrete measuring procedure. Roughly speaking, p ( o )  is pure if 
one has some property of minimal disturbance, some ability of the measurement to 
give a maximum of information; we shall see various examples ( p ( w )  pure and not 
pure) in the case of continuous measurements. 

2. Counting processes 

The first class of continuous measurements which has been introduced in quantum 
mechanics is that of counting processes [2,4-9, 13, 17, 18, 28, 31-34]. One or more 
counters act continuously on the system and register the times of arrival of photons 
or other kinds of particles. 

Let us consider the case of d counters. They differ by their localization and/or by 
the type of particles to which they are sensible and/or by their method of operation. 
We can describe this counting process by giving the so-called exclusive probability 
densities (EPDS)  [7,9]. The quantity Pi,(Olp) is the probability of having no count in 
the time interval ( fa ,  11, when the system is prepared in the state p at time fa .  The 
quantity p i ~ ( j , , t ~ ; j 2 , 1 ~ ;  . . .  ;j,,,,t,,,lp), j k = l  , . . . ,  d, l o < t , < t 2 <  . . .  <t, , ,Gt,  is the 
multi-time probability density of having a count of type j, at  time t I ,  a count of type 
j2 at time t 2 , .  . . ,and no other count in the rest of the interval ( f a ,  t]. Davies [4] (see 
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also [5 -9] )  has shown that these EPDS can be consistently described in quantum 
mechanics in the following way. 

Let Lf0(f )  be a Liouvillian (the generator of a completely positive dynamics [29] 
on ?(%)) and Bj(t), j = 1 , .  . . , d, be completely positive maps on F(%). Let US 
introduce the positive operators R;( t )  on Z by 

A Barchielli and V P Belavkin 

R; ( f ) :=B; (  t ) ' L  (2.1) 

Tr{Xdp} = Tr{pd'X} VP E T(W VXEB(Z). (2.2) 

For any operator 99 on T(%), its adjoint d' on B(%) is defined by 

Finally, let 9(t, to ) ,  I >  to ,  be the family of completely positive maps on T(Z) 
defined by the equations 

Y(!&rG)=M (2.5) 
a -.Y(!, !i)=.a(r).'p!!, to) 
at - 

Here {a,  b} = ab  + bz and Id is the identity map on F(Z). Then, the quantities 

p:,(Ol~) =Tr{y(t ,  t o ) p }  (2.5) 

P & ~ ,  1, ; j 2 ,  t2 ;  . . . ; j m ,  t,b) 
=Tr{y(t, t,)&,(~,W(t,, tm-l)B,m.,(~m-t). . . y(h,  ~J3;,(~M(G, lu)p} 

(2.6) 
(where f o <  t 1  < f 2 < .  . . < f, s 1, ,jk = 1 , .  . , , d )  are a consistent family of EPDS. 

The whole statistics of the counts can be reconstructed from the EPDS. For instance, 
the probability of m counts of type j in the time interval ( t o ,  IJ,  n counts of type i in 
the interval ( f , ,  t 2 ]  is given by 

P ( m , j ,  ( t o ,  GI; n, i, ( h ,  1~11~) 

, I,:'dsl &, sl;j ,  s,;. . . ; j ,  s,; i, TI; i, r z ; .  . . ;  i, d p ) .  (2.7) 

In a similar way, all of the more complicated joint probabilities can be constructed. 
One nf the mnst signifcan? p:nb!ems !reit& by this thenry is thzc nf !he e!ertrGn- 

shelving effect or quantum jumps. An atom with a particular level configuration and 
suitably stimulated by laser light emits pulsed fluorescence light with random bright 
and dark periods. It is possible to use &(t)  to describe the free atom and the driving 
term due to the laser and to use the operators $ , ( t )  to describe the emission process. 
Then, the full statistics of the fluorescence light can be computed and, in particular, 
the mean duration of the dark periods [17-191. Other applications to quantum optics 
of the counting theory described here are given in 135-371. 

Let us now consider the problem of the a posteriori states. Our counting process 
can be considered as a stochastic process whose associated probability measure 
(uniquely determined by (2.5) and (2.6)) is concentrated on step functions. Let US 

consider t o=  0 as the initial time, A typical trajectory w,  up to time f is specified by 
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giving the sequence ( j l ,  f , ;  j 2 ,  1,;. . . ; j., 1,) of types of counts and instants of counts 
1, < f 2  <. . . < f. up to time 1. Let w,  be the trajectory we have registered up to time f. 

Then, the conditional probability P(0, (1, f + i ] l w ,  ; p )  of no count in the interval (1, 
f + r ] ,  given the state p at time zero and the trajectory w,,  is given by 

(cf (1.2)). By (2.31, (2.5) and (2.6), we obtain immediately that the probability (2.8) 
can be rewritten as 

P(0, ( f ,  f + r ] l w , ;  p)=Tr{Y(f+ f, f )p ( f ) )  = P:+'(Olp(t)) 

P (  f = - Y( f, f" )$j.( f" )Y( f", f"- 1) . , . $j, ( fJY( f a  , O ) P  

(2.9) 

(2.10) 
1 

C ( 0  

where C ( f )  is the normalization factor determined by Tr{p(f)} = 1 (cf (l.2), (1.3) and 
(1.5)). Similar results hold for the other EPDS conditional upon some trajectory up to 
time 1. Therefore, all conditional probabilities can be computed by (2.5) and (2.6) if 
one uses as the initial state the expression (2.10). Equation (2.10) gives the state of 
the system at time f conditional upon the trajectory w,  up to time f (the aposferion state). 

The interpretation of (2.10) is that, when no count is registered, the system evolution 
is given by Y( 1, to)  and that the action of the counter on the system, at the time f in 
which a count of type j is registered, is described by the map $j( f ) .  However, Y ( f ,  t o )  
and $j(f) do not preserve normalization and the normalization factor C ( f )  is needed. 
This is due to the fact that they are the probabilities (2.5) and (2.6) which have to be 
correctly normalized and this is guaranteed by (2.1) and (2.4), connecting $j(f) with 
Y ( f ,  to) .  According to this interpretation of (2.101, the state of the system in between 
two counts is 

(2.11) 

where I, is the time of the last count and p(  f,) the state just after this count. If we 
denote Tr{Rj(f)p(f)) by (Rj(f)), and differentiate (2.11), we obtain 

d 

(2.12) ~- dp(f)  - %(f)p(f) -4 1 {Rj(f) -(R,(f)),, d f ) } .  
df j=, 

Moreover, if at time 1, we have a count of type j ,  the state of the system soon after is 

(2.13) 

Now the typical trajectory N , ( f )  (number of counts of type j up to time t ) ,  
j = I , .  . . , d, of our stochastic process is a step function such that N , ( f )  increases by 
one if soon after time t there is a count of type j ,  otherwise N,( f )  is constant. Therefore, 
the It8 differential 

dN,(f)= N,(t+df)- h',(t) (2.14) 

is equal to one if at time f there is a count of type j and to zero otherwise. This gives 
(dN,(f))'=dN,(f). Moreover, the probability of more than one count in an interval 
d t  vanishes more rapidly than df, i.e. between dN,(f)  and dN,(f) ,  i # j ,  at least one of 
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the two must be zero. Moreover, dN,( t )  d t  is of higher order than dt and has to he 
taken as vanishing. Summarizing, we have the It8 table 

dN,(t) dN,(t)  = 8, dN,(t) dN,(t) dt  = O .  (2.15) 

By using these results we can rewrite (2.12) and (2.13) in the form of asingle stochastic 
differential equation in the It6 sense (dp ( t )=p( f+d t ) -p ( f ) ) :  

A Barchielli and V P Belaukin 

(2.16) 

d 

j - l  
Z(f)p=%(f)p+ 1 (9j(Op-;{Rj([), P } )  (2.17) 

( R j ( [ h  ='WR,(f)p(t)I =TrU,([)p(t)}. (2.18) 

Indeed, when all the dN;(f) vanish, (2.16) reduces to (2.12); when one of the dN;(f) 
is equal to one all the other terms in the RHS of (2.16) are negligible and we obtain 
(2.13). Equation (2.16) was firstly obtained by quantum stochastic calculus methods 
in [25,28,38,39]. 

Formula (2.16) is the equation for the a posteriori states in the case of a counting 
measurement: it determines the state at time f depending on the (stochastic) trajectory 
up to time 1. Let us stress that we know the solution of this equation: it is the state 
(2.10). In any case, it is very useful to have the differential stochastic equation (2.16), 
as we shall see in the rest of this section and in section 4. 

Let (dNj(f)j(w,) be the mean number of counts of type j in the interval ( f ,  f+df]  
conditional upon the trajectory w,  up to time f. Because probabilities of more than 
one count in a small interval are negligible, we have 

(drvl(r))(w,)=p:'d'(j, Mf)) dt=Tr{dP,(t)p(t)}d[=(R,([)), dt. (2.19) 
In other words the quantities ( R j (  f ) ) ,  df appearing in (2.16) are the a posteriori mean 
oahes of dNj(f). Moreover, the differentials 

dMj(f) =dP$(t)-(R;(f)j, d t  (2.20) 

appearing in (2.16), together with the initiat condition M j ( 0 )  = 0, define the a posteriori 
centred processes Mj( f), called innovating marfingales. 

Equation (2.16) is nonlinear, but it is mathematically equivalent to a linear one. 
Let us introduce an arbitrary stochastic real factor c( t j  and define the trace-class 
operator v(f):= c(t)p(f). If we know ~ ( t )  we can reobtain the state p ( c )  simply by 
normalization. The factor c ( t )  can be chosen in such a way that q ( f )  obeys a linear 
stochastic differential equation; moreover, this choice is not unique. We shall do this 
ii, ba:h ;he 
a posteriori state p ( f )  and the EPDE (2.5) and (2.6) (cf [39]). Let ~ ( t )  be a trace-class 
operator depending on the trajectory w,  and defined by d f )  =Y(f, f , ) d t , )  if 1, is the 
time of the last count and by q ( f , + d f ) =  Tf;(f,)q(t,) if at time I, there is a count of 
type j; 7 is an arbitrary parameter with dimensions of time, which disappears from 
the physical quantities. For the initial condition we take ~ ( 0 )  = p. 

v ~ r y  coi,.venient .W.~Y.~ a new linear stochastic eqiiaiio'7 is o&ai,7e&l 

" _ . I _ ^  A-c-:.:-.. .-,. , .L^ ^__ .̂..:... D y  LUG "CL, ,1111 "1, "1 Iy,t,, L l l F  q"aUL1Ly 

c ( d  = W d f ) l  (2.21) 

c ( t )  = PXOlP) (2.22) 
gives the EPDS (2.5) and (2.6): in the case of a trajectory w ,  containingnojump we have 
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and in the case of a trajectory with a jump of type j ,  at time f,, . . . , of type j ,  at time 
f, we have 

c ( f ) = T m p ~ ( j , , f l ;  . . .  ; j m . f m l p ) .  (2.23) 

Moreover, by the definition of q ( t ) ,  c ( f )  and p ( f )  the a posferiori state is 

P ( o = d f ) l c ( f ) .  (2.24) 

w e  r - n  nhtnin +hp C+nrh .x t iP  rlif?erenti.l a n n o t i n n  fnr In the c i m ~  wnl r  nr  fnr _....._ "I...- -" .". ,.,, ,,__".. "".I... ..._ l.l.-.- ....-. ~~ --..-.. .-. 
~ ( f ) ,  which turns out to be (cf [28], equation (20)) 

By using It& calculus for counting processes it is possible to verify that (2.211, (2.24) 

abilities via (2.21)-(2.23) and the R posteriori states via (2.21) and (2.24). Equation 
(2.25) is linear, once a realization N j ( f ) ,  j = 1,. . . , d, of the process is given. However, 
let us note that the statistics of Nj(f) depends in its turn on the premeasurement state 
p, as shown by (2.5), (2.6) and (2.19). The possibility of finding a linear equation 
mathematically equivalent to (2.16) means that p ( f )  is linear in p up to a normalization 

Let us stress that, in general, (2.16) does not transform pure states into pure states. 
This simply means that in the course of time we lose information due to some dissipation 
mechanism, for instance the system interacts with some external bath, etc. In any case, 
the situation in which pure states are preserved is particularly interesting. This is the 
case [20,21,25,26] when 

- - A  1112\ " - ~  :-A--A --..:..-tart f.. I I  1 1 )  C -.." t:-- /I 1c\ ..It thn --nh 
',,I" \e.->, lllb ,.."CL" Y'I".".aLC"L U, \'.'"I. LyUY""" \'.A.', Y C L C . I I I . I I b O  a11 u... p'vv- 

fztor, I?s suggested by ( ! . 5 ) .  

- ,  ,* 
$fo( t )p= - i [H(t) ,pj  dz;( f j  = i;( t)p.zj( 1)' (2.26) 

where Z,(f) and H ( f )  are operators on X, H(f) '=H(t) .  Then, we have Rj(t)= 
5(f)tq(f) and 

d 

j=l 
% t ) p = - i [ ~ ( t ) , p l +  (5(t)p5(f)t-f{5(f)tZ,(f),p}). (2.27) 

Then, (2.16) becomes 
d 

dp(f)=-i[H(f) ,  p ( 0 l  dt-f  X {5(f) 'Z,(f)-(5([) '5(f)) , ,p(f)}df 
j=, 

(2.28) 

By using the It8formula (2.15), one can prove that p( f+df)*=p(f+df) ,  if p ( f ) ' = p ( f ) ;  
therefore, (2.28) transforms pure states into pure states and it is equivalent to a stochastic 
differential equation for a wavefunction. Indeed, let +(f) E Yt' satisfy the ' a  posferiori 
Schrodinger equation' [28,39] 

I d \ 

d$(f )=( - iH(f ) - i  , = I  1 ( Z , ( f ) ' Z , ( f ) - ( ~ ( t ) ' Z , ( f ) ) , ) ~ $ ( f )  dr 
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with (5( t ) 'Z , ( t ) ) ,  = ($(~)1~(~)'5(~)~(t));  then, (2.15), p ( 0  = lIL(t))($(t)/ satisfies 
(2.28). 

It is interesting to note that in between two counts (when dNj(t) = 0) (2.29) becomes 
a nonlinear Schrodinger equation of the type studied, for instance, in [40,41]. However, 
this equation has a quite different interpretation in the quoted references, where the 
problem is to find evolution equations compatible with the Hilbert space structure and 
preserving 'properties' in the sense of quantum logic. 

Now we have the a posteriori states defined by (2.16) and a probability measure 
on the trajectory space, which is implicitly defined by the E P D S  (2 .5 )  and (2.6). Therefore, 
we can reconstruct the instruments associated with our measurement by means of (1.7). 
As in [28,39], we shall do this by using the notion of the characteristic operator, a 
concept introduced in [lo-131, and the It8 formula for counting processes. 

Let f be any function of the trajectories of our stochastic process and let us denote 
by (f)., the mean value o f f  with respect to the measure associated to the EPDS (2.5) 
and (2.6). The quantity 

(2.30) 

is called the characferistic functional of the process. Here k(s) is a test function, i.e. 
k,(s)  is a real compact support C"-function on (0, +CO). @,[k] determines uniquely 
the whole counting process up to time 1:  roughly speaking, @,[k] is the Fourier 
transform of the probability measure of the process. More explicitly [17], we have 

" 

@,[kl= Pb(Olp)+ I: 1 l0 'dtm j0" 
m = 1  ( ,*I=,  

/ o " d h e x p ( i l ~ l  k,, ( t l ) ) ~ ~ ( j ~ , f , ; j  2 , ~ ~ ; . . . ; j ~ , f m l p ) .  (2.31) 

Let us set now 

V,[k]=exp(i j = 1  i [o'kj(s)dN,(s)) (2.32) 

According to (1.7), we can write 

(K[kl~( l ) ) s t=  % [ ~ I P  (2.33) 

where p ( t )  is the a posteriori state at time t and %[k] is an operator on F(X) which 
represents the 'functional Fourier transform' of the instrument 9, associated with our 
measurement up to time 1. The quantity 9,[k] can he called the characteristic operator 
and it is the operator analogue of the characteristic functional of a stochastic process 
[ll-131. By the normalization of p ( t )  and (2.30) and (2.33), we obtain 

W k l  =Wc$[kIpl .  (2.34) 

An equation for 9,[k] can be found by differentiating (2.33). The differential of 
p ( t )  is given by (2.16), while the differential of VJk] is 

This formula can be easily obtained from (2.32) by expanding the exponential and 
using (2.15). By using the formula 

(2.36) d( V,[klp(t)) = (dV,[kl)p(t) + V,[kl(dp(t)) +(dV,[kl)(dp(t)) 
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where the It6 correction (dV,[k])(dp(t)) has to be computed by means of the It6 table 
(2.15), we obtain 

(2.37) 

Now let us take the stochastic mean of (2.37). We compute this mean in the 
following way. First we take the mean with respect to the probability measure on the 
future (with respect to t )  conditional upon the given trajectory. All the quantities on 
the RHS of (2.37) depend only on the past (they are adapted), but the quantity dN,(f), 
whose a posteriori mean value is just (I$(()), d t  (2.19). Therefore, the last term in 
(2.37) vanishes. Then, we take the mean value also on the past and, by (2.33), we obtain 

(2.38) 
d 
- W k l =  W k ( 0 ) W k I  d t  

X , ( k ( t ) )  = 2 ( t )  + 1 (e",'"- l)$,(t). 
d 

] = I  
(2.39) 

Together with the initial condition 

gO[k] = Id (2.40) 

(which follows from the definition (2.33)), (2.38) determines uniquely 9,[k] and 
implicitly the instruments on the trajectory space. This kind of equation has been 
obtained for the first time in [13]. 

If no selection is made according to the results of the measurement (let us say the 
results are not read), the state of the system at time t will be (cf (1.8)) 

4 1 )  =(p(t)),t (2.41) 

U( I )  is the a priori state for the case of the continuous measurement described in this 
section. According to (2.32), (2.33), (2.38) and (2.39) the a priori states satisfy the 
quantum master equation 

(2.42) 

with the new Liouvillian (2.17), the unperturbed Liouvillian & ( I )  corrected by the 
measurement effect term E;=, ( $ , ( t ) p - - f { R , ( t ) ,  p ) ) .  The fact that we have obtained a 
linear equation for the a priori states is due to linearity and normalization of the 
instruments (cf (1.8)). 

d 
-u(f)=Lt(f)u(f) 
d t  

3. An example of a counting process: a two-level atom 

Let us consider an example of a counting measurement on the simplest quantum 
system: a two-state system, described in the Hilbert space X = C 2 .  We can think of a 
two-level atom, an unstable particle, a spin, etc. While the general case could be 
handled, for concreteness we treat a two-level atom with pumping and damping. This 
section should be considered simply as an illustration of the theory developed before. 
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The (time-independent) unperturbed Liouvillian is given by 

1 
(3.1) 

dtop = A,u+pu-+ A-u-pu+ (3.2) 

(3.3) 
0, uj, i = 1 , 2 , 3 ,  are the Pauli matrices, uo is the 2 x 2 identity matrix 

3 O P -  - _ -  2 ~ [ ~ ~ 3 . ~ l + d P o ~ - i { R o , ~ J  

I R , = ~ , U ~ =  ~ A + ( U ~ - U ~ ) + , L ( U ~ +  U,). 

Here o > 0, A* 
and u*=t(u,+iu.,). 

We consider a single counter ( d  = 1) and take 

d t i p = A i u - ~ ~ +  A , > O  (3.4) 
the map 9, describes the emission of photons (or other types of particles), which are 
then counted by some electronic device. In the present case, the rate operator (2.1) is 

(3.5) RI = 2!uo = A lu+u- = f A  I (uo+ U,) 

and the generator 3 (2.17) of the full dynamics is 

i 
2 j = 0  

1 

= % - - W [ ~ ~ , P I +  E (dPj~- f {Rj ,~} ) .  (3.6) 

We can intemre! the !ems with A + as pumping, !he !ems with A._ as incoherent 
damping and the terms with A ,  as electromagnetic decay; r = A ,  is the electromagnetic 
transition rate. If A + = O ,  we can interpret the system as a Wigner atom (or another 
unstable particle). In this case the electromagnetic transition rate is r = L + A , ;  A _  # 0 
means that not all the photons are collected by the photocounter; E = A , l ( A _ + h , )  is 
the efficiency of the counter [17]. 

In order to perform computations, it is convenient to represent self-adjoint trace- 
class operators 9 as 

Q = f(CUo+ (U+ + <*U- + tu,) C , S E W  LE@. (3.7) 

The operator 9 is positive if c 

[- t ( t ) .  The stochastic equation (2.25), choosing T =  A;', becomes 

(c2+ lL12)1'2 and it is a density matrix if also c = 1. 
Let us consider (2.25) and represent Q ( t )  in the form (3.7) with c + c ( t ) ,  L + [ ( t ) ,  

(3.8) 

(3.9) 

dc(t)+fAl(c( t ) + t (  t ) )  dt  = f ( t ( t ) - c ( f ) )  d N (  1 )  

df( I )  + [ ( 2 ~  -$Al)[( f )  + ( U +fA,)c( t ) ]  dt  = -f(c( f )  +35( t ) )  d N (  t )  

dC(t)+(io+K)l(f)  d t  = -[( 1 )  d N ( t )  (3.10) 

where K = ~ ( A , + A _ + A , ) ,  a = L - A + .  It is convenient to rewrite (3.8) and (3.9) in 
terms of the stochastic parameters 

W o ( f )  =f(c(t)  - t ( t ) )  r , ( t )  =f (c ( t )+  5(t)) (3.11) 

this gives 

dro(f)+(pTno(f) - K J T I ( ~ ) )  d t = ( r i ( t ) -  wo(t))  dN(t )  

d r , ( f )  + ( p ~ n i (  t ) - K T T o ( f ) )  dt  = - r i ( t )  d N ( t )  
(3.12) 

where ~ ? = K ? = A + ,  K ~ = A - ,  p ~ = A ~ f h - .  
The solution of (3.10) is very simple: 

(3.13) 
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where I ,  is the instant of the first jump of N ( f ) .  Let us denote by cj ( fJa ,  b) the solution 
of (3.12) with d N ( f )  = O  and initial conditions co(0) = a ,  cl(0) = b. Then, the solution 
of the stochastic system (3.12) is 

(3.15) 

(%(t)l1) = T r { u + ~ ( t ) l =  C([)*/[Wt)l 

with c ( f ) = c o ( f ) + c , ( t ) .  Equations (3.13)-(3.15) show that at a jump of N ( f )  the 
system surely goes into the ground state, since 5 = 0 and e, = 0, and that for f > f 1  the 
system is surely in a mixture of ground and excited states, since 5 = 0. The EPDS are 
implicitly given by c ( f )  = ro( t ) +  r , ( t ) ,  7 =A;', (2.22), (2.23) and (3.14). 

Just as an example, let us discuss the case of the Wigner atom ( A +  = 0). Equations 
(3.14) become 

co(O)+(h-/2K)(1 -e-2"')rl(o) if  fs f ,  

[ o  if I >  f ,  

cl([) = e-2"'wr,(0) if f l  < t s f 2  (3.16) 

w i t h ~ = f ( h _ + A , ) ,  c , (O)+c , (O)= l .  Equations(3,15)givep(t)=10)(01for t > t , :  after 
the first registered emission the atom is in the ground state. Finally, the EPDS are 

1 
2 K  

p;(olp) = ~ ~ ( 0 )  +- ( A - + A ,  e-*"')cl(o) 

PA(&,  f , lp )  = A ,  e-2"'Lfll(0) 

pXjl, f l ; .  . . ; j m ,  f,lp) = O  

(3.17) 

(3.18) 

(3.19) 

These equations imply that there is, at most, one count, as must be the case since there 
is no pumping. 

m > 2. 

4. Diffusion processes 

In the classical case, Gaussian diffusion processes can be obtained from Poissonian 
counting ones by centring and scaling. Similarly, in the quantum case we can obtain 
some kind of 'quantum diffusion measuring processes' from the quantum counting 
processes of section 2. 

Let us take the maps 2j(t), describing the action of the counters, of the following 
form: 

(4.1) 
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where the Z;( t )  are operators on X, thef; are complex functions and E > 0 is a parameter 
which we want to vanish at the end. Moreover, instead of &et),  we take as the 
unperturbed Liouvillian the expression 
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i d  
% ( t ) p  =zdt)p+- 2E j - ,  1 [i~(t)*Z(f)-if;(t)5(t)+, PI. 

2 ( t ) U = 2 0 ( t ) U +  1 ( Z ( t ) U Z ( t ) t - ~ { ~ ( t ) t ~ ( t ) ,  U } ) .  (4.3) 

(4.2) 

Then, the generator 2(t) of the a priori dynamics (cf (2.17) and (2.42)) becomes 
d 

j = ,  

The expression (4.2) has been assumed in order to have 2 ( t )  independent of the 
parameter E. Physically, the structure (4.1)-(4.3) is related to heterodyne detection [42]. 

Moreover, we make a linear transformation on the outputs: we call Y;(t) the new 
observed processes, related to the oid processes N,( t )  by 

1 
d U;( t )  := E d y.( t )  - - I f ; (  t)I2 dt  (4.4) 

& 

this means that we rescale the outputs and subtract a known deterministic signal. Then, 
by (4.4) and (2.15), we obtain 

dY,'(t) d Y I ( t )  = d y . ( t )  = dY;(t)+S,1x(t)12 dt. (4.5) 

In order to have the characteristic operator associated with these new processes, 
we have to rescale the test function k ( s ) ,  appearing in (2.30), (2.34) and (2.38)-(2.40), 
by changing kj( I )  into Eki( f )  and we have to shift the mean values of &Nj( t )  as in (4.4) 
by adding to X , ( k ( t ) )  the term -i/& Zj  k j ( t ) l f ; (  t ) l ' .  The final result is that the generator 
X , ( k ( t ) )  of the characteristic operator %?,[&I becomes 

d 

~ , ( k ( t ) ) p  = z ( t ) p +  1 ( -fkj(t)21f;(t)12p+ik,(t) 
j = l  

x ( f ; ( t ) * z , ( t ) p  +f;( t ) p q ( r ) + )  + (e"*,'"- l).qf)LJZ,(f)+ 

+-(e"k,"J- 1 -i&kj(t))(fi(t)*Z(f)p+f;(f)p5(f)+) 

+$(t)l (e 

1 

E 

' " P - 1  -iakj(t)+f&2kj(t)2)p . (4.6) 

Also, (2.16) for the aposteriori states can he expressed in terms of the new processes 

1 1 

Y,"(t). By (2.1), (2.18), (4.1), (4.3) and (4.4), we obtain 

d p ( t ) = Z ( t ) p ( t )  d t +  X [&Z(f)p5(1)t--E(S(t)tS(f))rP(1) 
d 

j = l  

+ f ; ( t ) * ( q t )  - ( ~ ( f ) ) , ) P ( t ) + f ; ( t ) P ( t ) ( ~ ( t ) + - ( ~ ( t ) + ) , ) l  

x ( & 2 ( . q l ) t q t ) ) ,  + E f ; ( t ) * ( q r ) ) ,  + E f ; ( t ) ( q t ) t ) ,  + lM(t)12)-l 

x(dY;(t)-E(Zj(t)t5(t)) ,  df-f;(t)*(<(t)), dt-f;(f)(q(t)'), d t )  
(4.7) 

where, for any operator X on X, (X), is defined by 

( X ) ,  =Tr{Xp(t)J. (4.8) 
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Moreover, from (4.4), (2.19) and (4,1), the a posteriori mean values of dY;(f) are 
given by 

(dY;(t))(w) =(f ; ( t ) (Z,( f ) ' ) ,  +L(f)*@,(f)),) df  + E(S(t)+Z,(f)), df. (4.9) 

We assume I f ; ( t ) l #  0, V f .  From (4.5)-(4.7) and (4.9), it is apparent that the limit 
€10 exists. In this limit the characteristic operator is given by (2.38) and (2.40) with 
the generator 

d 

j = ,  
W k ( O ) p  = z ( t ) p +  I: [ - f k j ( f ) 2 l f ; ( f ) l Z p + i k , ( l ) ( ~ ( f ) * ~ ( f ) ~ + f ; ( f ) p ~ ( f ) t ) l .  (4.10) 

By setting Y , ( f )  =limE,oY:(f), the equation for the a posteriori states becomes 

d p ( t ) = z ( f ) p ( t )  d f  
d 

+ 1 [ f ; ( l )*(Z, ( f ) - (S( f ) ) , )~( f )+f ; ( f )~( f ) (S( f )+- (Z, ( f ) t ) , ) l  
j-3 

1 
x ~ ( d Y , ( t ) - f ; ( f ) * ( S ( t ) ) ,  dt-f;(t)(Z,(t)'), d f ) .  (4.11) 

If;(t)l 

Moreover, the a posteriori mean value of d Y,( f )  becomes 

(dY,(t))(wO = 2  Re(f;(t)*(S(f)) ,)dt  (4.12) 

and the processes M j ( f ) ,  defined by 

d M j ( f ) = d Y , ( f ) - 2 R e ( ~ ( f ) * ( S ( f ) ) , )  df M,(O) = 0 (4.13) 

are again innovating martingales. Finally, the multiplication rule for the differentials 
d q ( t )  is the limit of (4.5) under EJO; also, by taking into account the second of 
equations (2.15) we have the It6 table 

dY,(f) dY,(t)=8,,lf;(f)lZdf d V,( f ) df = 0. (4.14) 

By the procedure we have followed, it also turns out that the connection between 
a posferiori states p ( f )  and characteristic operator 9,[k] given by (2.33) continues to 
hold, but now p ( f )  satisfies (4.11), YI([k] satisfies (2.38) and (2.40) with the generator 
given by (4.10), and VJk] is given by 

V,[kl=exp(i j = ,  ( 'k j (s)dY,(s))  0 (4.15) 

Alternatively, (2.33) can be proved by taking the stochastic differential of both of its 
sides, as was done in the case of counting processes. 

By taking the mean value of (4.12) on the past, we obtain 

(4.16) 

where u( f) are the a priori states satisfying (2.42) with Liouvillian (4.3). The same 
result can be obtained by functional differentiation of the characteristic functional 
Tr{YIT[k]p}, T >  f, with respect to k j ( f )  [l l] .  

Equations (4.15) and (4.16) show us two things. First, our continuous measurement 
gives the statistics of the generalized derivatives [431 y j ( f )  = $(f) (or of the increments 
dY,(t)) more than the statistics of the Y , ( f )  themselves. The same was true in the case 

d 
- ( Y,(fht = Trl(f;(O*5(t)  +h(t)5(t) 'h(f)} df 
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of counting processes, but in that case this difference was irrelevant because we had 
the natural initial condition jVj(0) = 0. Second, (4.16) can be interpreted by saying that 
y j ( t )  is the output of a continuous measurement of the quantum observables (self- 
adjoint operators) J(t)*q(t)+h(f)q(f)', which are, in general, non-commuting [ IO-  
12, 22-25]. 

Measuring processes defined by a characteristic operator with a generator of the 
type (4.10) were introduced in [lo-121 and (4.11) was obtained by quantum stochastic 
calmiiis iiieihods in [25-27,38,44j. Bj; h e a r  tr~iistorinaiioiis on iiie uuipuis, ihe most 
general diffusive case can be reached; moreover, by taking prescription (4.1) only for 
a subset of the $j,  mixtures of diffusive and Poissonian contributions can be obtained 
[38]. It6 equations for the aposferiori states in the purely diffusive case have also been 
considered by Di6si [45-471. 

As in the case of counting processes, there exists a (non-unique) linear stochastic 
eqi;a:i=n --a:hema:ica!!y equiva!e:: := (4.11). Fo: instance, !e: q [ t )  be a ::ace-c:ass 
operator satisfying the equation [38] 
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(4.17) 

and set c(t):=Tr{q(f)}. Then, by It8's calculus, one can show that p ( f ) = q ( t ) / c ( f )  
satisfies (4.i ij .  T i e  same comments appiy to the iinear equaiion i f i 7 )  as to (2.25). 

In the case of an unperturbed Liouvillian of a purely Hamiltonian form, 

%e,(t)p = -i[H(t), PI (4.18) 

(4.11) transforms pure states into pure ones; to prove this it is sufficient to show that 
p ( t+d t )2=p( t+d t )  if p ( t ) ' = p ( t ) .  In this case, which we can call complete measure- 
ment, (4.i ij  is equivaient to a stochastic diiiereniiai equaiion for a wavefunction, as 
in the case of counting measurements. Indeed, let $( t )  E %! satisfy the ' a  posteriori 
Schrodinger equation' [26,44] 

d$(t)= -(iH(t)+f j = ,  1 ( q ( t ) ' ~ ( t ) - 2 ( q ( t ) ' ) , q ( t ) + I ( Z j ( t ) ) , l 2 ) ) $ ( t )  dt  
d 

x (dY,(t) -J(t)*(Zj(t)), dt-h(t)(q(t) ' ) ,  d t )  (4.19) 

with ( q ( t ) ) c  = ( $ ( t ) l q ( f ) $ ( t ) ) ;  then, by I t63 calculus, p ( t ) - l @ ( r ) ) ( @ ( f ) l  satisfies 
(4.11). 

It is interesting to note that stochastic equations of the type (4.11) and (4.19), with 
h( 1 )  = 1, have appeared in the literature also in connection with dynamical theories of 
wavefunction reduction [48-521. The idea is that the wavefunction reduction associated 
with a measurement is some kind of stochastic process and an equation of the type 
(4.19) is postulated. Apart from the different interpretations, another important 
difference is that in the dynamical reduction theories the noise comes from outside, 
while for us it is determined by  the system itself. 

Sometimes it is useful t o  have at our disposal a complex version of diffusion 
processes. Let us consider the case of an even d. By redefining d and the index j, the 
sum appearing in (4.10) and (4.11) can be reorganized as a double sum over A, A = 1 ,  
2, and j, j = 1 ,  ..., d.Then, wetakeflj(t)=1,f2j(t)=i,Zlj(f)=Z2j(f)=~(t) and set 
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~ ~ ( t )  = k,j(f)+ik2j(t), y.(t) =t( Y,j(f)+iY2j(t)). Then, (4.3). (4.10)-(4.12) and (4.15) 
become 

z ( t ) U = 2 0 ( t ) U + 2  E [ Z , ( t ) u Z , ( t ) ' - t { 5 ( t ) ' ~ ( t ) ,  U}] (4.20) 
d 

j = ,  

d 

xr(K(f))P = z e ( t ) P +  1 [ - f l K j ( [ ) l Z P f i ( K j ( f ) * S ( f ) P + K j ( 1 ) P 5 ( [ ) ' ) l  (4.21) 

+(t)  = Z ( [ ) P ( ~ )  d t + 2  1 [(Z,(t) - (~ ( t ) ) , )p ( [ ) (d~ ( t ) * - (Z , ( l ) t )~  dt)  

j = ,  

d 

j - l  

+(dU:(t)-(Z,(t)), d t ) p ( f ) ( Z , ( f ) ' - ( 5 ( t ) ' ) , ) l  (4.22) 

d y . (  f )  d W;( 1 )  = O  (4.23) 

(dW,(t))(m,)=(Z,('))t dt. (4.24) 

By taking the mean value of (4.24) on the past, we obtain 

d W,( t)* d W,( t )  =fa,, d t  d y.( t )  d t  = 0 

(4.25) 

which allows us to interpret the equations above as describing a continuous measure- 
ment of the non-commuting, non-self-adjoint operators Z,.( t ) .  Filtering equation (4.22) 
for linear systems (quantum oscillators) was introduced in [21, 221. 

d 
- ( W , ( t ) ) s c  = T r I Z , ( M ' ) }  d t  

5. An example of a diffusion process 

Let us close the paper with a simple example of the theory developed in section 4, 
using the complex version (4.20)-(4.25). A real-valued Gaussian example for an 
observed particle in a quadratic potential can be found in [25,53]. We consider a 
single-mode field in a cavity and with a source 

H (  f) = wata+g(f)at+g(t)*a W > O  (5.1) 

interacting with a thermal bath 

z d t ) p  = -i[H(t), pI+A,([ap, a'l+[a, pa ' l )+A+([a+~.  a l+ [a+ ,  pa l )  (5.2) 

A , ,  A, 3 0 and subjected to the measurement of a single complex observable ( d  = 1 )  
proportional to the annihilation operator 

Z = v a  VEC. ) (5.3) 
The fact that Z is proportional to a means that we are considering a passive, purely 
absorbing detector. 

By scaling the output in such a way that we have exactly a measurement of a 
(d W(r)/q + d W(t), v * ~ ( t )  + ~ ( t ) ) ,  (4.20)-(4.25) become 

(5.4) 

( 5 . 5 )  
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dr 
(dW(t ) )2=0 Id W( t ) l '=  - d W(t) dr = O  (5.7) 21d2 

d 
d(W(t))(w)=(a) ,  d t  - d r  (W(t))s ,=Tr{adt)) .  (5 .8 )  

Equations (2.38), with generator ( 5 . 9 ,  and (5.6) can be solved by antinormal 
ordering expansion of trace-class operators. Let us define on T( 2) a 'tilde' operation 
by ~€T(W+3;(5*: ,5) .  

& ( f * ,  f )  =Tr{e-'c*"p e-'@'} (5.9) 

which can be inverted by 

'p =; dZf e'{'" e'"' 3;({*, 5). (5.10) ' S  
Let us set 

' p ( f ) ' p ( K * , K ;  f ) = g , [ K * , K ] p  

then (2.38) and (5.5) give, by standard computations, 

a . .  
-'p(.$*, 5;  t )  = (-(iw +fr)f*a*+(iw -fr)fa-K( ()*a*- K(t)a 
at 

(5.1 1 )  

-2A\t1fI2-g(r)5*+g(t)*5-11~(t)/lll2)~({*, 5; 1) 

where a = a la& a* =ala.$* and 

r = 2 ( l n 1 2 + h ~  -AT). 

We suppose r to be strictly positive. 
If the initial condition is 'Gaussian', 

P ( # * ,  6) = exp[-i(f*a0+ f.3 - f ( f*2wo+ f'wO*) - 1 ~ l ~ ~ ~ l  (5.14) 

then $ maintains this structure at any time. Indeed, by insening 

F(g*, [; 1 )  = exp[-i(t*b(f) + f c ( t ) * )  - $ ( 5 * 2 d ( t )  + f2d(t)*) -1f12f(t)  - h ( t ) l  

into (5.12), we obtain the differential equations for the coefficients (f is real): 

(5.15) 

b ( t )  = -(iw+fT)b(t)+iK(f)*d(f)+iK(f)f(f) -ig(t) (5.16~1) 

c(r )  = -(iw +$)c(r) -iK(f)*d(t) -iK(f)f(f) -ig(t) (5.16 b )  

d ( r )  = -(2iw + r ) d ( t )  (5 .16~)  

f ( f )  = -rf(f) +2AT (5.16d) 

h ( 1 ) =  - i K ( f ) * b ( l ) - i K ( f ) C ( I ) * + f l K ( f ) / l l l * .  (5.16e) 

The characteristic functional of our generalized process [43] W ( r )  is given by (see 
The solution of these equations can be easily written down. 

(2.34) and (2.40)) 

Q , [ K * ,  K ]  =TI{~(K* ,  K ;  t ) )  = G(o, 0; I) =eh'" (5.17) 

(5.12) 

(5.13) 
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with 

h ( t )  = -i jo' d S ( K ( s ) * a ( s ) + K ( s ) a ( s ) * ) +  ds  ds'(K(s)*K(s')A,(s, S') lo' 
+ ~ K ( s ) K (  s ')A~( S, SI)* + f ~ (  s ) * K (  s')*A,(s, s')) (5.18) 

(5.21) 

a,(s, s,) = e-(i-+r/2)i~+~') PO (5.22) 

where 0 is the usual step function. O T [ ~ * ,  K ]  is the characteristic functional of a 
Gaussian complex process with covariance (5.20). (5.22) and ( a  priori) mean values 

The apriori states are given by u(1) = 9,[01p or G(5*, 5; t )  = $(5*, 5; t)l.=.*=o. By 

(5.24) 

(5.15) and (5.16) we obtain 

6(5*, 5; t )  = exp[-i(c*a(t)+cc) -$(5*Ze-(Ziu+r)t Po+CC)-1512C(~)l. 

This gives 

Tr{a'au( t ) )  = C(1) Tr{ a2u( I ) )  = exp[ -2(iw + fr) f ] f i 0 .  (5.25) 

Note the links between the covariance (5.25) ofthe apriori states U( t )  and the covariance 
(5.20) and (5.22) of the process W(1). 

By the 'tilde' transformation (5.9), we can also solve the equation for the aposteriori 
states (5 .6) .  From (5.6), (5.9) and (5.10) we obtain 

d;(g*, 5; t )  = [-(iw +fr)c*J*+ ( i o  -fr)ga -2A11512 -g(f)5*+g(f)*51 

x i ( [ * ,  5; 1) dt+2l11l2[(dW(t)*-(ut), d t )  

x (id* - ( a ) , )  + (d Wf )  -(a), dt)(iJ-(a'),)li(5*, 5; t). (5.26) 

This equation can be rewritten in terms of the stochastic function 

/(c*, 5;  r ) :=  -In ;(e*, 5; I). (5.27) 

By using It6's formula d F / i =  -d/+f(dl)2, which in turn implies ( d i / i ) 2 =  (dl)', and 
It6's table (5.7). we obtain 

dl = [ -2 (~1~d* /J I -  ( io  +$)5*J*/+(io -fr)5Jl+2A,/S12 

+ g ( t ) 5 *  - g(r)*5 - 21~121(a),121 d t  + 21 71' 
x [(iJ*l+(a),) dW(t)*+(iJl+(a'),) dW(t)]. (5.28) 
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With the initial condition (5.14) the solution of (5.28) remains quadratic in 5 and 

I ( (* ,  f ;  t )=i ( f * (a) ,+5(ar) , )+1(5*2p(t )+f2pL(t )* )+)5)2y(t )  (5.29) 

5*. Indeed, let us write 

where Y( t) 0; the term independent of 6 is lacking because of normalization of ,,( t )  
and the linear term must have just the form we have written because ( a ) ,  is the a 
posteriori mean value of W(f). By inserting (5.29) into (5.28) and equating the 
coeficientr of the rime order in 6 and f * ,  we obtaix 

d(a), +[(iw + $ ) ( a ) ,  + i s (  t ) ]  dr 

= 2Ivl2Mt)(dWt)*  - ( a t ) ,  dt) + 4 0 ( d  W t )  - ( a ) ,  dt) l  (5.30) 

(5.31) 
d 
- p ( t ) +  (z iw+r)p( t )  = -41v12p(t)v(t)  dt  

d 
- Y(r)+rY(t)  = -2iqi2(ip(t)i2+ ~ ( 1 ) ~ ) + 2 h ~  

with (a') ,  = ( a ) :  and the initial conditions (a )o  = a,, p(0) = pn, v(0) = Y,,. 

becomes 

(5.32) dt  

In the case po=O, we obtain p(f)  = O  (the stationary solution of (5.31)) and (5.32) 

d 
- u(t)+rv(t) = -2 (v12~( f )2+2Al  (5.33) 
dr 

which is Riccati's equation and has the stationary positive solution vm 

Y ='[ 4 1 9 1 ~  ( l + 1 6 ~ ~ ~ z $ ) " 2 - l ] ,  (5.34) 

Equations (5.30) (for p =0) and (5.33) were obtained for the first time in [21,22,24] 
as optimal filtering equations for linear systems. 

After a transient, any memory of the initial condition is lost. The characteristic 
functional is given by (5.17) and (5.18) with a priori mean values 

and covariance A,(s, s') = 0, 

(5.35) 

(5.36) 

The a priori states are given by 

+-(5*, 5;  t)=exp( - i ( 5 * ~ ( t ) + 5 a ( r ) * ) - ~ 1 5 1 2 )  (5.37) 

while the a posteriori states are 

idt*, 5; 1 )  =exp[-i(~*(a),+f(a ') ,)-  4tl21 (5.38) 

with a posteriori mean values 

( a ) ,  = jot exp[-(iw +$+21q12~,)(r - s)](-ig(s) d s + 2 1 ~ 1 ~ v ,  d W ( s ) ) .  (5.39) 
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Note that U-> 2AJT for A t  > 0 and U, = 0 for A +  = 0. In this last case the asymptotic 
a priori and a posteriori mean values coincide ( u ( t ) = ( a ) ( )  and the same holds for a 
priori and a posteriori states 

Om([) = P A [ )  = lu(t)Ka(t)l (5.40) 

where 1.) denotes the usual coherent states and u ( r )  is given by (5.35). 
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